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The problem of the collision of bimetallic plates during welding by explosion is exam- 
ined in [i]. It is simulated by the diagram of the flow of a two-layered ideal incompressi- 
ble weightless fluid jet. It is considered that the flow is planar stationary. If the dens- 
ities of the metals forming the bimetallic plate are distinct, then the Bernoulli constants 
are dissimilar in the different layers and, consequently, the layer interfacial lines are 
lines of tangential velocity discontinuity. Such a combination of initial parameters govern- 
ing the flow is possible for which the line of tangential velocity discontinuity is a bifur- 
cating streamline. Then, as follows from the Bernoulli integral, the classical flow diagram 
with a critical point cannot be realized in which the velocity vanishes on both sides of 
the jet interracial line. In this case, a flow diagram with a stagnation zone (Fig. la) 
proposed for problems with lines of tangential velocity discontinuity by Sedov [2] can be 
considered. The stagnation zone size and shape depend on the magnitude of the pressure P0 
given therein and its value can vary within definite limits. 

If the Bernoulli constants of the interacting jets are identical, then as P0 tends to 
the stagnation pressure p, the size of the stagnation zone diminishes without limit and it 
shrinks to a point. The flow diagram with the stagnation zone here goes over continuously 
into a flow diagram with a critical point. The situation is analogous when the Bernoulli 
constants of different jets are distinct. On the basis of the impossibility of realizing 
a classical flow diagram with a critical point for different Bernoulli constants of differ- 
ent jets are distinct. On the basis of the impossibility of realizing a classical flow 
diagram with a critical point for different Bernoulli constants, the erroneous deduction 
is made in [i] that P0 should differ from the p, of a jet with a smaller Bernoulli constant 
by a certain quantity and, consequently, the stagnation zone size cannot be less than the 
specific one. Indeed, as is shown below, as P0 + P*, the stagnation zone diminishes without 
limit even in the case of different Bernoulli constants and shrinks to a point while the 
flow diagram with the stagnation zone goes over into the flow diagram with a cusp (reentry) 
point of the boundary streamline ACD (Fig. ib) [3]. The flow pattern displayed holds if 
the velocity head of the jet A is less than the velocity head of the jet B. The line of 
tangential velocity discontinuity L goes along the tangent to the rectilinear boundary AB 
at the point C, where the slope of the streamline BCD at the point C changes continuously 
while the slope of the streamline ACD at the point C undergoes a jump of 180 ~ . The velocity 
of the jet A vanishes at the point C while the velocity of the jet B that has a greater head 
is different from zero at the point C. 

i. Instead of the flow with the stagnation zone [i], let us study reversed flow obtained 
from the initial flow by replacing the velocity vector at each point by its opposite. We 
then arrive at a problem of the collision of jets flowing oppositely to each other along 
a rectilinear solid wall AB. In the general case the jet velocity heads can be distinct. 
Such a problem is solved in [4] by an iteration method similar to that elucidated in [3]. 
The solution is sought by conformal mappings of the complex potentials of the individual 
jets w + and w- and the Zhukovskii functions w + and m- on the parametric half-planes t and 
u with correspondence of the points indicated in Fig. 2a. 

Let Pl, vl, v2 denote the pressure and velocity moduli on the free streamlines AD and 
BD, respectively; H l, H 2 be the jet widths at infinity; Pl, P2 be the fluid densities in 
the jets; v0 +, v 0- be the velocity moduli at the stagnation zone boundaries FC and CE; m+ = 
in (dw+/vldz) = in (v+/vl) - i8 + and m- = In (dw-/v2dz) = in (v-/v 2) - i8 be the Zhukovskii 
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The desired solution is described by the system of equations 
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(ql, q2 are the bulk mass flow rates of the jets A and B, ql = vzHi, 
the slope of the velocity vector to the Ox axis). 
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The continuity boundary conditions for the pressure and the slope of the velocity 
vector should be satisfied on L 
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where  t e [0 ,  1 ] ,  u e [ - 1 ,  0 ] ,  and t and u a r e  c o n n e c t e d  by t h e  r e l a t i o n s h i p  
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The s o l u t i o n  o f  t h e  p r o b l e m  u n d e r  c o n s i d e r a t i o n  i s  d e t e r m i n e d  by t h r e e  d i m e n s i o n l e s s  
parameters, the ratio between the jet widths being at infinity h = H2/Hx, the ratio between 
the jet velocity heads being at infinityl = p2v22/plv 12, and the number • = (Pl - P0)/(i/2) • 
plvl 2 characterizing P0. For definiteness, we consider that i e i. 
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The flow diagram with a stagnation zone for different velocity heads (k # I) allows 
for arbitrariness exactly as in the case of identical heads (X = i): P0 can vary between 
Pl on the free streamlines AD and BD and p, = Pl + �89 2 of the jet A with the smaller 
velocity head, which corresponds to a change in the dimensionless • from 0 to -i, respec- 
tively. As ~ § 0, the stagnation zone dimensions increase without limit. 

Let us examine the behavior of the solution as • + -i. The geometric flow patterns 
for h = I, X = 1.1, and different ~ are displayed in Fig. 3. For comparison, flow patterns 
in the case h = i, X = i are presented for the same ~ (the computations were performed by 
formulas in [5], because of symmetry half the flow is displayed, the linear dimensions are 
referred to the width H I of the jet A). The distribution of the pressure coefficient Cp = 

(p - pl)I/2plVl 2 along the solid rectilinear flow boundary is given by dashes. It is seen 
that in both cases X = I and X = i.i) the dimensions of the stagnation zone diminish without 
limit as ~ = - (P0 ~ P*) and the zone shrinks to a point. If the flow diagram with the 
stagnation zone goes in the case of identical velocity heads here into a flow diagram with 
a critical point, in which the jet velocity on both sides of the jet interfacial line van- 
ishes, then for different heads it will go over into a flow diagram with a reentry point 
(cusp) of the boundary streamline. 
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As • v a r i e s  between the  l i m i t s  - i  and - 0 . 9 9  ( f o r  ~ = 1 .1 )  the  shape o f  t he  f r e e  s t ream- 
lines and the streamline ECD (see Fig. la) remains practically unchanged although the stag- 
nation zone dimensions vary substantially. 

Graphs of the distribution of the pressure coefficient Cp along the streamline ECD are 

displayed in Fig. 4 as a function of the length s measured from the point E for different 
(line 1 is for ~ = -0.9). For ~ = -i-0.999 the graphs agree (line 2). Figs. 3 and 4 

show that for flow diagrams with a reentry point (~ = -i, k # i) the value of Cp is almost 

a constant equal to one near this point along both the streamline AC and the streamline CD, 
i.e., the value of the pressure is close to the value p, of the jet A while the magnitude 
of the velocity modulus differs slightly from zero. 

2. Now let us show that as • + -I the system of equations describing the flow in a 
diagram with a stagnation zone goes over into a system of equations describing the flow 
in a diagram with a cusp point. 

The flow with a cusp (see Fig. ib) is determined by two dimensionless parameters, h = 
H2/H I and ~ = p2c~2/plvl 2 We seek the solution for each jet separately by considering the 
pressure distribution (for the jet B) or the slope of the velocity vector (for the jet A) 
given on the separating streamline CD. Mapping the domain of variation of the complex 
potentials w + and w- and the Zhukovskii functions ~+ and m- on the parametric half[planes 
t and u with correspondence of the points indicated in Fig. 2b, we obtain a system of equa- 
tions describing the flow under consideration. The equations for mapping w+(t) and w-(u) 
on t and u, as well as the boundary conditions on the line of tangential velocity discon- 
tinuity, are exactly the same as for a flow in a diagram with a stagnation zone: (I.i), 
(1.2), (1.9)-(1.11). The remaining equations have a form analogous to (1o3)-(1.6), where 
as is easily shown they are obtained from the latter by a passage to the limit under the 
conditions t o + 0-, u 0 § 0 +, which are equivalent to the condition • § --I. 

As • § -i the velocity modulus v0 + on the stagnation zone boundary FC tends to zero; 
consequently, the arc length of FC also tends to zero, meaning t o -~ 0". As follows from 
(1.8), here u 0 ~ 0+; consequently, the arc length of CE tends to zero. 

Therefore, in the case of different Bernoulli constants the dimensions of the stagna- 
tion zone diminish without limit as • ~ -I, it shrinks to a point and the flow diagram with 
the stagnation zone goes over into a flow diagram with a reentry point of the boundary 
streamline. 

The author is grateful to L. I. Sedov and V. P. Karlikov for attention and useful dis- 
cussion of the research results. 
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